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The strength of a low-barrier hydrogen bond in water
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Abstract—There are large differences between the acidity of the enol of the acyclic diketone, 2,4-pentanedione and those of two
cyclic diketones, 1,3-cyclopentanedione and 1,3-cyclohexanedione. Computational studies have demonstrated that these differ-
ences are largely due to the strength of the internal low-barrier hydrogen bond (LBHB) in the enol of 2,4-pentanedione. It is thus
estimated that the lower limit of the additional free energy of formation in water for this LBHB over that of a conventional
hydrogen bond is 4.1–5.3 kcal mol−1. © 2002 Elsevier Science Ltd. All rights reserved.

Low-barrier hydrogen bonds (LBHBs) and the possible
important role played by them in accelerating enzy-
matic reactions have drawn significant research effort in
the past several years.1–14 This special kind of hydrogen
bond is characterized by a reduced distance between
donor and acceptor atoms (�2.6 A� ) as compared to an
ordinary hydrogen bond; the barrier against proton
transfer thus falls to approximately the zero-point
energy of the hydrogen atom.15 Another characteristic
of LBHBs is a markedly downfield NMR chemical shift
for the shared proton, which is typically 16–20 ppm.

LBHBs have large gas phase free energies of formation.
The gas phase strength for the hydrogen bond in FHF−

has been estimated to be about 37 kcal mol−1.15,16

However, LBHBs are much weaker in solution, espe-
cially in water, which can compete for hydrogen bond-
ing. The hydrogen bond in the monoanion of maleic
acid has been estimated to be 4–5 kcal mol−1 in DMSO
and 1 kcal mol−1 in water or methanol stronger than a
conventional hydrogen bond in corresponding sol-
vents.17 The LBHBs in monoanions of dicarboxylic
acids have been characterized and estimated to be up to
4 kcal mol−1 stronger than conventional hydrogen
bonds in aqueous solution.18 The results agree reason-
ably well with the value predicted by theoretical calcu-
lations.19 On the other hand, LBHBs have been
postulated as crucial features in enzymatic mechanisms
where rate accelerations require stabilization of transi-
tion states by 10–20 kcal mol−1.

We have noticed the large differences between the
acidity of the enol of the acyclic diketone 2,4-pentane-
dione (acetylacetone) and those of two cyclic diketones,
1,3-cyclopentanedione and 1,3-cyclohexanedione.
Enolone 1 has an internal hydrogen bond, which is not
available in enolones 2 and 3. This hydrogen bond can
be classified as a LBHB due to its short internuclear
distance of 2.38–2.60 A� 20,21 and the downfield NMR
chemical shift at 16 ppm.22 In this report, we estimate
the strength of this LBHB in water by comparing the
acidity of enolones 1, 2, and 3.

The differences in the acidities of the two types of
enolones should be related to the strength of the hydro-
gen bond in enolone 1, plus, perhaps, other factors.
Other factors might include the distance between the
negative oxygen atoms in the enolonate anions, depar-
tures from coplanarity in the conjugated �-electron
systems of the enolones and enolonates, different
changes in strain energy upon loss of the acidic proton,
and, for reactions in solution, differential solvation of
the conjugate acid and base forms.
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Computational studies were carried out to determine
the effects of some of these factors on the acidities of
enolones 1–3. Experimental gas phase data are avail-
able for the equilibrium between acetylacetone and its
enol and for the acidity of the enol.23 We find that at
the MP2/6-31+G**//MP2/6-31+G* level the computed
�H for the keto to enol conversion is −0.7 kcal mol−1.
Experimental values range from −2.4 to −4.7 kcal mol−1

and Keq is reported to be 41, hence the enol is strongly
favored in the gas phase. As found also by Dannenberg
and Rios,24 the use of diffuse functions on the hydro-
gens as well as the heavy atoms is necessary for com-
puting the enolization reaction to be exothermic. At the
same computational level we find the enthalpy of
deprotonation, �Hacid, to be 343.2 kcal mol−1 for the
enol, in agreement with the experimental value of
343.8±2.1 kcal mol−1.23 We conclude that this level is
adequate for our purpose.25

Table 1 contains selected geometric features of com-
pounds investigated in this study, optimized at MP2/6-
31+G*. The short distance between the two oxygen
atoms in enol 1 indicates a short, strong hydrogen bond
involving the two oxygens and the intervening proton.
The small dihedral between the two C–O bonds shows
the overall planarity of the hydrogen-bonded enolone
framework. These results as well as the C–C bonding
distances (not shown) within the enolone moiety are in

good agreement with the computational results of Dan-
nenberg and Rios24 and with experimental results of
Iijima et al.21 The C–O distances (not shown) are in
excellent agreement with those of Dannenberg and
Rios,24 but slightly longer than those found by Iijima et
al.21,26

The O�O distances in structures listed in Table 1 are
related to the presence or absence of repulsions between
the two oxygens. The syn, planar conformer of enolate
4 has the oxygens much nearer one another than does
the anti conformer (4) which is calculated to be 6.4 kcal
mol−1 more stable at the MP2/6-31+G**//MP2/6-31+
G* level. In both conformers the C2, C3, C4 angle is
relatively large, perhaps to alleviate O–O repulsions. In
enolone 2, enolone 3, and their enolonates 5 and 6 the
O�O distances are longest of all with consequent mini-
mization of electrostatic repulsion between the two
oxygens.

The dihedral angles between the C�O moieties are very
small in all enols and enolates. There appears to be no
evidence that resonance stabilization of the enolone and
enolonate species is compromised by lack of coplanar-
ity, except in the transition state for interconversion of
the enolate conformers of enol 1.28

Table 2 shows three isomerizations taken from Dan-
nenberg and Rios24 and two homodesmotic reactions
computed by us. Together they make the case that our
level of computation is satisfactory for predicting the
energetics of �-enolones and their enolates. Reaction
(1) is Dannenberg and Rios’ measure of the intramolec-
ular hydrogen bonding strength for enol 1, a conju-
gated enolone. Reaction (2) assays the stabilization
contributed by resonance, but without hydrogen bond-
ing. Reaction (3) provides a measure of intramolecular
hydrogen bonding strength in an unconjugated enol.
Dannenberg and Rios argue that the extra stabilization
found for enol 1 is not simply due to conjugation but
might be provided by a degree of aromaticity present in
its cyclic six �-electron perimeter. Others have argued

Table 1. Selected geometric data of structures computed
at MP2/6-31+G* (MP2/6-311+G**)

d, O···O (A� )Structures �, O�C···C�O (°)

1 2.60 (2.55) 0.03 (0.01)
4.31 (4.31)4 180.0 (180.0)

0.12 4.78
0.14.785

4.763 7.6
0.06 4.76

Table 2. Enthalpies of reaction for some isomerization and homodesmotic reactions relevant to the hydrogen-bonding
strength in conjugated �-enolones
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that this hydrogen bond is unusually strong because of
‘resonance-assisted hydrogen bonding’.29 Reactions (4)
and (5) show that enolones 2 and 3 are more acidic
than enolone 1 by an amount that is very close to the
hydrogen bond strength in the latter as given by reac-
tion (1). We conclude that it is therefore permissible to
use the relative solution phase pKa values of enolones
1–3 to estimate the strength of the internal hydrogen
bond in a conjugated �-enolone.

However, it must be asked whether other factors con-
tribute to the differences in the solution phase acidities
of these enolones. Data in Table 1 show that there is no
lack of planarity in the conjugated �-electron systems.
Differential strain energy (increased angle strain)
between the acid and base forms of enolone 1 could
contribute to destabilization of the enolate, but similar
(slightly smaller) increases in the C1, C2, C3 angle also
occur upon deprotonation of enolones 2 and 3. The
O–O distances in the cyclic enolonates are larger than
for enolate of enolone 1. However simple electrostatic
calculations show that this should not cause a signifi-
cant difference, even in the gas phase.30 Differences in
the solvation of the conjugate acid and base forms
could lead to differences in the acidities of internally
H-bonded and non-H-bonded enolones. Enolone 1 is
likely to be less well solvated, both in hydrogen-bond-
ing donor and acceptor solvents, than enolones 2 and
3.31,32 This factor acts to stabilize the latter and
decrease their acidities relative to that of enolone 1.
Since enolone 2 and enolone 3 are in fact more acidic
than enolone 1, the acidity differences provide a lower
limit of the strength of the intramolecular LBHB in
solution. Finally, it must be noted that the pKa mea-
surements in solution will lead to ��G values, not ��H
values. Nevertheless, entropy contributions should not
be critical since 1–3 and their enolates all have fixed,
planar conformations.

We have determined the pKa values of 2,4-pentane-
dione, 1,3-cyclopentanedione, and 1,3-cyclohexane-
dione in water to be 9.00, 5.23, and 4.34, respectively.
The pKa values were measured at 25°C via pH titration
using a pH meter containing a glass electrode in an
atmosphere of argon. The pKa of 1,3-cyclopentanedione
has not been measured previously and the pKa values of
the other two diketones are nearly identical with the
values reported in the literature.33 The two cyclic dike-
tones exist in the enol form (enolones 2 and 3) in water,
however, 2,4-pentanedione exists mainly in the keto
form with an equilibrium constant of 0.19.27b,32 There-
fore, the measured pKa values for the cyclic ketones are
those of enolones 2 and 3 while the pKa for enolone 1
is calculated from the measured global pKa and the
equilibrium constant between the keto and enol forms
to be 8.20, in excellent agreement with the reported
value.33

The differences in the pKa values of enolones 1 vs 2 or
1 vs 3 correspond to ��G values of 4.1 and 5.3 kcal
mol−1, respectively. As discussed above, these values
represent a conservative estimate of the additional free
energy of formation in water for the LBHB in enolone

1 over that of a regular, external hydrogen bond. If the
strengths of conventional hydrogen bonds are 4–8 kcal
mol−1 in water, the overall strength of the LBHB in
enolone 1 can be estimated to be at least 9–13 kcal
mol−1, in good agreement with the experimental and
theoretical values of the LBHBs in the monoanions of
dicarboxylic acids.18,19 In a less polar environment, the
strength of LBHB could be significantly higher than the
values reported here and thus could be an important
factor in enzymatic catalysis.
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